DATA SHEET

BGY1085A

$1000 \mathrm{MHz}, 18.5 \mathrm{~dB}$ gain push-pull amplifier

FEATURES

- Excellent linearity
- Extremely low noise
- Silicon nitride passivation
- Rugged construction
- Gold metallization ensures excellent reliability.

DESCRIPTION

Hybrid high amplifier module for CATV systems operating over a frequency range of 40 to 1000 MHz at a supply voltage of +24 V (DC).

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
G_{p}	power gain	$\mathrm{f}=50 \mathrm{MHz}$	18	19	dB
		$\mathrm{f}=1000 \mathrm{MHz}$	18.5	-	dB
$I_{\text {tot }}$	total current consumption (DC)	$\mathrm{V}_{\mathrm{B}}=24 \mathrm{~V}$	-	240	mA

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{i}	RF input voltage	-	65	dBmV
$\mathrm{T}_{\text {stg }}$	storage temperature	-40	+100	${ }^{\circ} \mathrm{C}$
T_{mb}	operating mounting base temperature	-20	+100	${ }^{\circ} \mathrm{C}$

1000 MHz , 18.5 dB gain push-pull amplifier

CHARACTERISTICS

Table 1 Bandwidth 40 to $1000 \mathrm{MHz} ; \mathrm{T}_{\text {case }}=30^{\circ} \mathrm{C} ; \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=75 \Omega$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
G_{p}	power gain	$\mathrm{f}=50 \mathrm{MHz}$	18	-	19	dB
		$\mathrm{f}=1000 \mathrm{MHz}$	18.5	-	-	dB
SL	slope cable equivalent	$\mathrm{f}=40$ to 1000 MHz	0	-	2	dB
FL	flatness of frequency response	$\mathrm{f}=40$ to 1000 MHz	-	-	± 0.3	dB
S_{11}	input return losses	$\mathrm{f}=40$ to 80 MHz	20	-	-	dB
		$\mathrm{f}=80$ to 160 MHz	18.5	-	-	dB
		$\mathrm{f}=160$ to 320 MHz	17	-	-	dB
		$\mathrm{f}=320$ to 640 MHz	15.5	-	-	dB
		$\mathrm{f}=640$ to 1000 MHz	14	-	-	dB
S_{22}	output return losses	$\mathrm{f}=40$ to 80 MHz	20	-	-	dB
		$\mathrm{f}=80$ to 160 MHz	18.5	-	-	dB
		$\mathrm{f}=160$ to 320 MHz	17	-	-	dB
		$\mathrm{f}=320$ to 640 MHz	15.5	-	-	dB
		$\mathrm{f}=640$ to 1000 MHz	14	-	-	dB
CTB	composite triple beat	85 channels flat; $\mathrm{V}_{\mathrm{o}}=44 \mathrm{dBmV}$; measured at 595.25 MHz	-	-	-58	dB
		110 channels flat; $\mathrm{V}_{\mathrm{o}}=44 \mathrm{dBmV}$; measured at 745.25 MHz	-	-	-53	dB
		150 channels flat; $\mathrm{V}_{\mathrm{o}}=40 \mathrm{dBmV}$; measured at 985.25 MHz	-	-53	-	dB
$\mathrm{X}_{\text {mod }}$	cross modulation	85 channels flat; $\mathrm{V}_{\mathrm{o}}=44 \mathrm{dBmV} ;$ measured at 55.25 MHz	-	-	-58	dB
		110 channels flat; $\mathrm{V}_{\mathrm{o}}=44 \mathrm{dBmV}$; measured at 55.25 MHz	-	-	-54	dB
		150 channels flat; $\mathrm{V}_{\mathrm{o}}=40 \mathrm{dBmV}$; measured at 55.25 MHz	-	-54	-	dB
CSO	composite second order distortion	85 channels flat; $\mathrm{V}_{\mathrm{o}}=44 \mathrm{dBmV} ;$ measured at 596.5 MHz	-	-	-60	dB
		110 channels flat; $\mathrm{V}_{0}=44 \mathrm{dBmV}$; measured at 746.5 MHz	-	-	-56	dB
		150 channels flat; $\mathrm{V}_{\mathrm{o}}=40 \mathrm{dBmV}$; measured at 986.5 MHz	-	-56	-	dB

1000 MHz , 18.5 dB gain push-pull amplifier

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
d_{2}	second order distortion	note 1 note 2 note 3	$\left.\right\|_{-} ^{-}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & -68 \end{aligned}\right.$	$\begin{aligned} & -72 \\ & -65 \\ & - \end{aligned}$	dB dB dB
V_{0}	output voltage	$\mathrm{d}_{\mathrm{im}}=-60 \mathrm{~dB}$ note 4 note 5 note 6	$\begin{aligned} & 61 \\ & 60 \\ & 57 \end{aligned}$	-	-	dBmV dBmV dBmV
F	noise figure	$\mathrm{f}=50 \mathrm{MHz}$	-	-	5.5	dB
		$\mathrm{f}=550 \mathrm{MHz}$	-	-	6	dB
		$\mathrm{f}=600 \mathrm{MHz}$	-	-	6	dB
		$\mathrm{f}=650 \mathrm{MHz}$	-	-	6.5	dB
		$\mathrm{f}=750 \mathrm{MHz}$	-	-	7	dB
		$\mathrm{f}=860 \mathrm{MHz}$	-	-	7.5	dB
		$\mathrm{f}=1000 \mathrm{MHz}$	-	-	7.5	dB
$\mathrm{I}_{\text {tot }}$	total current consumption (DC)	note 7	-	-	240	mA

Notes

1. $\mathrm{f}_{\mathrm{p}}=55.25 \mathrm{MHz} ; \mathrm{V}_{\mathrm{p}}=44 \mathrm{dBmV}$;
$\mathrm{f}_{\mathrm{q}}=541.25 \mathrm{MHz} ; \mathrm{V}_{\mathrm{q}}=44 \mathrm{dBmV}$;
measured at $\mathrm{f}_{\mathrm{p}}+\mathrm{f}_{\mathrm{q}}=596.5 \mathrm{MHz}$.
2. $f_{p}=55.25 \mathrm{MHz} ; \mathrm{V}_{\mathrm{p}}=44 \mathrm{dBmV}$;
$\mathrm{f}_{\mathrm{q}}=691.25 \mathrm{MHz} ; \mathrm{V}_{\mathrm{q}}=44 \mathrm{dBmV}$;
measured at $f_{p}+f_{q}=746.5 \mathrm{MHz}$.
3. $f_{p}=55.25 \mathrm{MHz} ; \mathrm{V}_{\mathrm{p}}=40 \mathrm{dBmV}$;
$\mathrm{f}_{\mathrm{q}}=931.25 \mathrm{MHz} ; \mathrm{V}_{\mathrm{q}}=40 \mathrm{dBmV}$;
measured at $f_{p}+f_{q}=986.5 \mathrm{MHz}$.
4. $f_{p}=590.25 \mathrm{MHz} ; \mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{o}}$;
$\mathrm{f}_{\mathrm{q}}=597.25 \mathrm{MHz} ; \mathrm{V}_{\mathrm{q}}=\mathrm{V}_{\mathrm{o}}-6 \mathrm{~dB}$;
$\mathrm{f}_{\mathrm{r}}=599.25 \mathrm{MHz} ; \mathrm{V}_{\mathrm{r}}=\mathrm{V}_{\mathrm{o}}-6 \mathrm{~dB}$;
measured at $\mathrm{f}_{\mathrm{p}}+\mathrm{f}_{\mathrm{q}}-\mathrm{f}_{\mathrm{r}}=588.25 \mathrm{MHz}$.
5. $f_{p}=740.25 \mathrm{MHz} ; \mathrm{V}_{\mathrm{p}}=\mathrm{V}_{0}$;
$\mathrm{f}_{\mathrm{q}}=747.25 \mathrm{MHz} ; \mathrm{V}_{\mathrm{q}}=\mathrm{V}_{\mathrm{o}}-6 \mathrm{~dB}$;
$\mathrm{f}_{\mathrm{r}}=749.25 \mathrm{MHz} ; \mathrm{V}_{\mathrm{r}}=\mathrm{V}_{\mathrm{o}}-6 \mathrm{~dB}$;
measured at $f_{p}+f_{q}-f_{r}=738.25 \mathrm{MHz}$.
6. $f_{p}=980.25 \mathrm{MHz} ; \mathrm{V}_{\mathrm{p}}=\mathrm{V}_{0}$;
$\mathrm{f}_{\mathrm{q}}=987.25 \mathrm{MHz} ; \mathrm{V}_{\mathrm{q}}=\mathrm{V}_{\mathrm{o}}-6 \mathrm{~dB}$;
$\mathrm{f}_{\mathrm{r}}=989.25 \mathrm{MHz} ; \mathrm{V}_{\mathrm{r}}=\mathrm{V}_{\mathrm{o}}-6 \mathrm{~dB}$;
measured at $\mathrm{f}_{\mathrm{p}}+\mathrm{f}_{\mathrm{q}}-\mathrm{f}_{\mathrm{r}}=978.25 \mathrm{MHz}$.
7. The module normally operates at $\mathrm{V}_{\mathrm{B}}=24 \mathrm{~V}$, but is able to withstand supply transients up to 30 V .

1000 MHz , 18.5 dB gain push-pull amplifier

PACKAGE OUTLINE

Rectangular single-ended package; aluminium flange; 2 vertical mounting holes;
$2 \times 6-32$ UNC and 2 extra horizontal mounting holes; 7 gold-plated in-line leads

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	$\begin{gathered} A_{2} \\ \max \end{gathered}$	b	C	$\begin{gathered} \mathrm{D} \\ \mathrm{max} . \end{gathered}$	d max.	$\begin{gathered} \mathrm{E} \\ \max . \end{gathered}$	e	e_{1}	F	$\stackrel{L}{\min }$	p	$\begin{gathered} Q \\ \max . \end{gathered}$	9	q_{1}	q_{2}	S	$\begin{gathered} \mathrm{U}_{1} \\ \max \end{gathered}$	\mathbf{U}_{2}	W	w	y	$\begin{gathered} \mathrm{Z} \\ \max . \end{gathered}$
mm	20.8	9.1	$\begin{aligned} & 0.51 \\ & 0.38 \end{aligned}$	0.25	27.2	2.54	13.75	2.54	5.08	12.7	8.8	$\begin{aligned} & 4.15 \\ & 3.85 \end{aligned}$	2.4	38.1	25.4	10.2	4.2	44.75	8	$\begin{aligned} & 6-32 \\ & \text { UNC } \end{aligned}$	0.25	0.1	3.8

OUTLINE VERSION	REFERENCES				
	IEC	JEDEC	EIAJ	EUROPEAN POT115J	

DATA SHEET STATUS

DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS	
Objective data	Development	DEFINITIONS
Preliminary data	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.	
Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.	
	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

NOTES

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

